COURSE MATERIAL

Ill Year B. Tech II- Semester
MECHANICAL ENGINEERING

AY: 2023-24

ARTIFICIAL INTELLIGENCE AND MACHINE
LEARNING LAB

R20A0580

| IVE TO LEARN & LEARN 0 SHARE [

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY
DEPARTMENT OF MECHANICAL ENGINEERING

(Autonomous Institution-UGC, Govt. of India)
Secunderabad-500100, Telangana State, India.
www.mrcet.ac.in

http://www.mrcet.ac.in/

MRCET CAMPUS

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

(AUTONOMOUS INSTITUTION - UGC, GOVT. OF INDIA)

Affiliated to JNTUH; Approved by AICTE, NBA-Tier 1 & NAAC with A-GRADE | IS0 9001:2015
Maisammaguda, Dhulapally, Komaplly, Secunderabad - 500100, Telangana State, India

4 N
N B 1B e
Roll No:................ BranCh:.
Year ... RS T=T 0 PP PR PPN

- J

Wi“"-” i iillllli R R I Rl ||||liil]"’i"ﬁ'"

..'T l--:- I\
].f.ljl ,, 1 —

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY
(AUTONOMOUS INSTITUTION - UGC, GOVT. OF INDIA)

Affiliated to JNTUH; Approved by AICTE, NBA-Tier 1 & NAAC with A-GRADE | 150 9001:2015
Maisammaguda, Dhulapally, Komaplly, Secunderabad - 500100, Telangana State, India

Certificate

Certified that this is the Bonafide Record of the Work Done by

M IS e Roll.No................. of

B.Tech year............................. Semester for Academic year 2023 - 2024

L e et e et e et e e et e e ettt e e e ae e Laboratory.
Date: Faculty Incharge HOD

Internal Examiner External Examiner

& ¢

INDEX

S.No

Date

Name of the Activity/Experiment

Grade/
Marks

Faculty
Signature

INDEX

S.No

Date

Name of the Activity/Experiment

Grade/
Marks

Faculty
Signature

A éu,:um%,
o 0 P
D e €
: E@ = g
el a
N Q

MRCET CAMPUS

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

(Autonomous Institution — UGC, Govt. of India)
DEPARTMENT OF MECHANICAL ENGINEERING

CONTENTS

1. Vision, Mission & Quality Policy

2. Pos, PSOs & PEOs

3. Lab Syllabus

4. Al Programs

5. ML Programs

www.mrcet.ac.in

ekt
¥ o™

e,

S AR %»%,
-% «@ g.
tﬁ o)

(a >

MRCET CAMPUS

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

(Autonomous Institution — UGC, Govt. of India)

VISION
< To establish a pedestal for the integral innovation, team spirit, originality and
competence in the students, expose them to face the global challenges and become

technology leaders of Indian vision of modern society.

MISSION
< To become a model institution in the fields of Engineering, Technology and
Management.
% To impart holistic education to the students to render them as industry ready
engineers.
.

< To ensure synchronization of MRCET ideologies with challenging demands of

International Pioneering Organizations.

QUALITY POLICY

% To implement best practices in Teaching and Learning process for both UG and PG

courses meticulously.
< To provide state of art infrastructure and expertise to impart quality education.

% To groom the students to become intellectually creative and professionally

competitive.

%+ To channelize the activities and tune them in heights of commitment and sincerity,

the requisites to claim the never - ending ladder of SUCCESS year after year.

For more information: www.mrcet.ac.in

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

(Autonomous Institution — UGC, Govt. of India)
www.mrcet.ac.in
Department of Mechanical Engineering

VISION

To become an innovative knowledge center in mechanical engineering through state-of-
the-art teaching-learning and research practices, promoting creative thinking

professionals.

MISSION

The Department of Mechanical Engineering is dedicated for transforming the students
into highly competent Mechanical engineers to meet the needs of the industry, in a
changing and challenging technical environment, by strongly focusing in the
fundamentals of engineering sciences for achieving excellent results in their professional
pursuits.

Quality Policy

v' To pursuit global Standards of excellence in all our endeavors namely teaching,
research and continuing education and to remain accountable in our core and
support functions, through processes of self-evaluation and continuous

improvement.

v To create a midst of excellence for imparting state of art education, industry-

oriented training research in the field of technical education.

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY
(Autonomous Institution — UGC, Govt. of India)
www.mrcet.ac.in
Department of Mechanical Engineering

PROGRAM OUTCOMES

Engineering Graduates will be able to:

1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering
fundamentals, and an engineering specialization to the solution of complex engineering
problems.

2. Problem analysis: Identify, formulate, review research literature, and analyze complex
engineering problems reaching substantiated conclusions using first principles of
mathematics, natural sciences, and engineering sciences.

3. Design/development of solutions: Design solutions for complex engineering problems
and design system components or processes that meet the specified needs with
appropriate consideration for the public health and safety, and the cultural, societal, and
environmental considerations.

4. Conduct investigations of complex problems: Use research-based knowledge and
research methods including design of experiments, analysis and interpretation of data,
and synthesis of the information to provide valid conclusions.

5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and
modern engineering and IT tools including prediction and modeling to complex
engineering activities with an understanding of the limitations.

6. The engineer and society: Apply reasoning informed by the contextual knowledge to
assess societal, health, safety, legal and cultural issues and the consequent
responsibilities relevant to the professional engineering practice.

7. Environment and sustainability: Understand the impact of the professional engineering
solutions in societal and environmental contexts, and demonstrate the knowledge of, and
need for sustainable development.

8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and
norms of the engineering practice.

9. Individual and teamwork: Function effectively as an individual, and as a member or
leader in diverse teams, and in multidisciplinary settings.

10. Communication: Communicate effectively on complex engineering activities with the
engineering community and with society at large, such as, being able to comprehend and
write effective reports and design documentation, make effective presentations, and give
and receive clear instructions.

11.Project management and finance: Demonstrate knowledge and understanding of the
engineering and management principles and apply these to one’s own work, as a member

and leader in a team, to manage projects and in multidisciplinary environments.

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

(Autonomous Institution — UGC, Govt. of India)
www.mrcet.ac.in
Department of Mechanical Engineering

12.Life-long learning: Recognize the need for and have the preparation and ability to

engage in independent and life-long learning in the broadest context of technological

change.
PROGRAM SPECIFIC OUTCOMES (PSOs)
PSO1 Ability to analyze, design and develop Machine learning systems to solve the
Engineering problems by integrating design and manufacturing Domains.
PSO2 Ability to succeed in competitive examinations or to pursue higher studies or
research.
PSO3 Ability to apply the learned Mechanical Engineering knowledge for the

Development of society and self.

Program Educational Objectives (PEOs)

The Program Educational Objectives of the program offered by the department are broadly

listed below:
PEO1l: PREPARATION

To provide sound foundation in mathematical, scientific and engineering fundamentals

necessary to analyze, formulate and solve engineering problems.
PEO2: CORE COMPETANCE

To provide thorough knowledge in Mechanical Engineering subjects including theoretical
knowledge and practical training for preparing Artificial models pertaining to Automobile Engineer-

ing, Element Analysis,Production Technology,Mechatronics etc.,

PEO3: INVENTION, INNOVATION AND CREATIVITY

To make the students to design, experiment, analyze, interpret in the core field with the help of

other inter disciplinary concepts wherever applicable.
PEO4: CAREER DEVELOPMENT

To inculcate the habit of lifelong learning for career development through successful completion

of advanced degrees, professional development courses, industrial training etc.

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY
(Autonomous Institution — UGC, Govt. of India)
www.mrcet.ac.in
Department of Mechanical Engineering

PEO5: PROFESSIONALISM

To impart technical knowledge, ethical values for professional development of the student to

solve complex problems and to work in multi-disciplinary ambience, whose solutions lead to

significant societal benefits.

10.

11.

CODE OF CONDUCT

Students should bring lab Manual/Record for every laboratory session and should enter
the readings/observations in the manual while performing the experiment.

The group- wise division made in the beginning should be adhered to, and no mix up of
students among different groups will be permitted later.

The components required pertaining to the experiment should be collected from stores
in —charge after duly filling in the requisition form.

When the experiment is completed, students should disconnect the setup made by them,
and should return all the components/instruments taken for the purpose.

Any damage to the apparatus that occurs during the experiment should be brought to the
notice of lab in-charge, consequently, the cost of repair or new apparatus should be
brought by the students.

After completion of the experiment, certification of the concerned staff in —charge in
the observation book is necessary.

Students should be present in the labs for the total scheduled duration.

Students should not carry any food items inside the laboratory.

Use of cell phones and IPODs are forbidden.

Students should not write on or deface any lab desks, computers, or any equipment
provided to them during the experiment.

Every student should keep his/her work area properly before leaving the laboratory.

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

(Autonomouslinstitution—- UGC,Govt.ofIndia)
www.mrcet.ac.in
Department of Mechanical Engineering

INDEX
S.NO. NAMEOFTHEEXPERIMENT PAGENOs.
1 program to implement all set operations 03-04
2 Implementation of DFS for water jug problem 04-05
3 Implementation of BFS for tic-tac-toe problem 06-11
4 8-puzzle problem using best first search 12-18
5 Program to solve 8 queens problem 19-27
6 Implementation of Hill-climbing to solve 8- Puzzle 28-29
Problem
7 |Data Extraction, Wrangling 30-31
8 |Implementation of Linear Regression 32-35
9 |Implementation of Multiple Regression 36-39
10 Implementation of K-nearest Neighbor 40-42
11 |Implementing K-means Clustering 43-46
12 [Implementing Hierarchical Clustering 47-50

http://www.mrcet.ac.in/

B. Tech (ME) R-20

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY
Il Year B.Tech. ME- Il Sem L/T/P/C
-/-/3/1.5

(R20A0580) ARTIFICIAL INTELLIGENCE & MACHINE LEARNING LAB
LAB OBJECTIVES:

Familiarity with the Prolog programming environment.

To introduce students to the basic concepts and techniques of Machine Learning.
To implement classification and clustering methods.

To become familiar with Dimensionality reduction Techniques.

Learning basic concepts of Prolog through illustrative examples and small exercises
&Understandmg list data structure in Prolog.

vk wNRE

STUDY OF PROLOG; WRITE THE FOLLOWING PROGRAMS USING PROLOG/PYTHON

week-1. Write a program to implement all set operations(Union, Intersection, Complement etc)
week-2.lmplementation of DFS for water jug problem using PROLOG

week-3. Implementation of BFS for tic-tac-toe problem using PROLOG
week-4. Solve 8-puzzle problem using best first search
week-5. Write a program to solve 8 queens problem

week-6. Implementation of Hill-climbing to solve 8- Puzzle Problem
MACHINE LEARNING

WEEK-1

Data Extraction, Wrangling

1. Loading different types of dataset in Python

2. Arranging the data

WEEK-2

Data Visualization

1. Handling missing values

2. Plotting the graphs

WEEK-3

Supervised Learning
Implementation of Linear Regression

WEEK-4
Implementation of K-nearest Neighbor

WEEK-5
Unsupervised Learning
Implementing K-means Clustering

WEEK-6
Unsupervised Learning
Implementing Hierarchical Clustering

LAB OUTCOMES:
1. Apply various Al search algorithms (uninformed, informed, heuristic, constraint satisfaction,)

Malla Reddy College of Engineering and Technology (MRCET)

B. Tech (ME)

R-20
2. Understand the fundamentals of knowledge representation, inference using Al tools..
3. Solve the problems using various machine learning techniques
4,

Design application using machine learning techniques

Malla Reddy College of Engineering and Technology (MRCET)

PROGRAM-1

Sets and Set Operations in Python

A set is defined by enclosing all of the items (i.e., elements) in curly brackets and separating
them with a comma or using the built-in set() method. It can include an unlimited number of
elements of various categories (integer, float, tuple, string, etc.).

However, a set may not contain mutable items such as lists, sets, or dictionaries. Empty sets
can be slightly tricky to use in Python. In Python, empty curly braces result in an empty
dictionary; however, we cannot use them to initialize an empty set. Instead, we use
the set() function without any arguments to create a set with no elements.

Program to perform different set operations
as we do in mathematics

sets are define
A=1{0,2,4,06,8};
B=1{1,2,3,4,5};

union

print("Union :", A | B)

intersection
print("Intersection :", A & B)
difference

print(" Difference :", A - B)

symmetric difference

print("Symmetric difference :", A * B)

Output:

("Union ', set([0, 1, 2, 3, 4, 5, 6, 8]))
('Intersection ', set([2, 4]))

(‘Difference ', set([8, 0, 6]))

('Symmetric difference :', set([0, 1, 3, 5, 6, 8]))

DEPARTMENT OF MECHANICAL ENGINEERING Page 3

PROGRAM-2

Implement Water-Jug problem using Python

This function is used to initialize thedictionary elements with a default value.
from collections import defaultdict

jugl and jug2 contain the valuefor max capacity in respective jugsand aim is the amount of

water to be measured.

jugl, jug2, aim =4, 3, 2

Initialize dictionary withdefault value as false.
visited = defaultdict(lambda: False)

Recursive function which prints theintermediate steps to reach the finalsolution and return
Boolean value(True if solution is possible, otherwise False).amtl and amt2 are the amount of

water presentin both jugs at a certain point of time.
def waterJugSolver(amtl, amt2):
Checks for our goal andreturns true if achieved.
if (amtl == aim and amt2 == 0) or (amt2 == aim and amt1 == 0):
print (amtl, amt2)
return True
Checks if we have already visited thecombination or not. If not, then it proceeds further.
if visited [(amtl, amt2)] == False:
print (amtl, amt2)
Changes the Boolean value ofthe combination as it is visited.
Visited [(amtl, amt2)] = True
Check for all the 6 possibilities andsee if a solution is found in any one of them.
return (waterJugSolver(0, amt2) or

waterJugSolver(amtl, 0) or

DEPARTMENT OF MECHANICAL ENGINEERING Page 4

waterJugSolver(jugl, amt2) or
waterJugSolver(amtl, jug2) or
waterJugSolver(amt] + min(amt2, (jugl-amtl)),
amt2 - min(amt2, (jugl-amtl))) or
waterJugSolver(amt] - min(amtl, (jug2-amt2)),

amt2 + min(amtl, (jug2-amt2))))

Return False if the combination is already visited to avoid repetition otherwiserecursion

will enter an infinite loop.
else:
return False
print ("Steps: ")
Call the function and pass the initial amount of water present in both jugs.

waterJugSolver(0, 0)

OUTPUT:

Steps:
00
40
43
03
30
33
42
02

DEPARTMENT OF MECHANICAL ENGINEERING Page 5

PROGRAM-3

Tic-Tac-Toe Program using random number in Python

importing all necessary libraries
import numpy as np
import random
from time import sleep
Creates an empty board
def create board():

return(np.array([[0, 0, 0],

[0, 0, 0],
[0, 0, 011))

Check for empty places on board
def possibilities(board):

=1l

for 1 in range(len(board)):

for j in range(len(board)):
if board[i][j] == 0:
Lappend((, j))

return(l)
Select a random place for the player
def random_place(board, player):

selection = possibilities(board)

current loc = random.choice(selection)

board[current loc] = player

DEPARTMENT OF MECHANICAL ENGINEERING Page 6

return(board)
Checks whether the player has three of their marks in a horizontal row
def row win(board, player):
for x in range(len(board)):
win = True
for y in range(len(board)):
if board[x, y] != player:
win = False
continue
if win == True:
return(win)

return(win)

Checks whether the player has three of their marks in a vertical row
def col win(board, player):
for x in range(len(board)):
win = True
for y in range(len(board)):
if board[y][x] != player:
win = False
continue
if win == True:
return(win)

return(win)

DEPARTMENT OF MECHANICAL ENGINEERING Page 7

Checks whether the player has three of their marks in a diagonal row
def diag win(board, player):

win = True

y=0

for x in range(len(board)):

if board[x, x] != player:

win = False
if win:
return win
win = True
if win:

for x in range(len(board)):
y =len(board) - 1 - x
if board[x, y] != player:
win = False

return win

Evaluates whether there is a winner or a tie
def evaluate(board):
winner = 0
for player in [1, 2]:
if (row_win(board, player) or

col_win(board, player) or

DEPARTMENT OF MECHANICAL ENGINEERING Page 8

diag_win(board, player)):
winner = player
if np.all(board != 0) and winner == 0:
winner = -1
return winner
Main function to start the game
def play game():
board, winner, counter = create_board(), 0, 1
print(board)

sleep(2)

while winner == 0:
for player in [1, 2]:
board = random_place(board, player)
print("Board after " + str(counter) + " move")
print(board)
sleep(2)
counter += 1
winner = evaluate(board)
if winner != 0:
break
return(winner)
Driver Code

print("Winner is: " + str(play_game()))

DEPARTMENT OF MECHANICAL ENGINEERING Page 9

OUTPUT:

[[0 0 0]

[0 0 0]

[0 0 0]]

Board after 1 move
[[0 0 0]

[0 0 0]

[100]]

Board after 2 move
[[000]

[02 0]

[100]]

Board after 3 move
[[010]

[02 0]

[100]]

Board after 4 move
[[010]

[220]

[100]]

Board after 5 move
[[110]

[220]

[100]]
Board after 6 move
[[110]

[220]

[120]]
Board after 7 move

[[110]

DEPARTMENT OF MECHANICAL ENGINEERING Page 10

[220]
[121]]
Board after 8§ move
[[110]
[222]
[121]]

Winner is: 2

DEPARTMENT OF MECHANICAL ENGINEERING Page 11

PROGRAM-4
Solving 8-Puzzle using BFS

The solution assumes that instance of puzzle is solvable
Importing copy for deep-copy function

import copy

Importing the heap functions from python library for Priority Queue

from heapq import heappush, heappop

This variable can be changed to change the program from 8 puzzle(n=3) to 15 puzzle(n=4)

to 24 puzzle(n=5)...

n=3

bottom, left, top, right

row=[1,0,-1,0]

col=[0,-1,0,1]

A class for Priority Queue

class priorityQueue:

Constructor to initialize a Priority Queue
def init_ (self):

self.heap =[]

Inserts a new key 'k'
def push(self, k):

heappush(self.heap, k)

DEPARTMENT OF MECHANICAL ENGINEERING Page 12

Method to remove minimum element from Priority Queue
def pop(self):

return heappop(self.heap)

Method to know if the Queue is empty
def empty(self):
if not self.heap:
return True
else:
return False
Node structure
class node:
def init_ (self, parent, mat, empty_tile pos,
cost, level):
Stores the parent node of the current node helps in tracing path when the answer is found
self.parent = parent
Stores the matrix
self.mat = mat
Stores the position at which the empty space tile exists in the matrix
self.empty tile pos =empty tile pos
Stores the number of misplaced tiles
self.cost = cost

Stores the number of moves so far

DEPARTMENT OF MECHANICAL ENGINEERING Page 13

self.level = level

This method is defined so that the priority queue is formed based on the cost variable of the

objects
def It (self, nxt):
return self.cost<nxt.cost

Function to calculate the number of misplaced tiles ie. number of non-blank tiles not in

their goal position
def calculateCost(mat, final) -> int:
count =0
for 1 in range(n):
for j in range(n):
if ((mat[i][j]) and
(matfi][j] 1= finali][j1)):
count += 1
return count
def newNode(mat, empty_tile pos, new empty tile pos,
level, parent, final) -> node:
Copy data from parent matrix to current matrix
new_mat = copy.deepcopy(mat)
Move tile by 1 position
x1 =empty_tile pos[0]
yl =empty tile pos[1]

x2 =new_empty tile pos[0]

DEPARTMENT OF MECHANICAL ENGINEERING Page 14

y2 =new_empty tile pos[1]

new mat[x1][yl], new _mat[x2][y2] = new_mat[x2][y2], new_mat[x1][y1]

Set number of misplaced tiles
cost = calculateCost(new_mat, final)
new_node = node(parent, new_mat, new_empty _tile pos,
cost, level)

return new_node

Function to print the N x N matrix
def printMatrix(mat):
for 1 in range(n):
for j in range(n):
print("%d " % (mat[i][j]),end ="")
print()
Function to check if (X, y) is a valid matrix coordinate
defisSafe(x, y):
returnx >=0and x<nandy>=0andy <n
Print path from root node to destination node
def printPath(root):
if root == None:
return
printPath(root.parent)

printMatrix(root.mat)

DEPARTMENT OF MECHANICAL ENGINEERING Page 15

print()

Function to solve N*N - 1 puzzle algorithm using Branch and Bound. empty _tile pos is the

blank tile position in the initial state.
def solve(initial, empty_tile pos, final):
Create a priority queue to store live nodes of search tree
pq = priorityQueue()
Create the root node
cost = calculateCost(initial, final)
root = node(None, initial,
empty_tile pos, cost, 0)
Add root to list of live nodes
pg.push(root)

Finds a live node with least cost, add its children to list of live nodes and finally deletes it

from the list.

while not pq.empty():

Find a live node with least estimated cost and delete it form the list of live nodes

minimum = pq.pop()

If minimum is the answer node

1f minimum.cost == 0:

Print the path from root to destination;
printPath(minimum)

return

DEPARTMENT OF MECHANICAL ENGINEERING Page 16

Generate all possible children
for i in range(4):
new_tile pos =
minimum.empty _tile pos[0] + row[i],

minimum.empty_tile pos[1] + col[i],]

if isSafe(new _tile pos[0], new tile pos[1]):
Create a child node
child = newNode(minimum.mat,
minimum.empty_tile pos,
new_tile pos,
minimum.level + 1,

minimum, final,)

Add child to list of live nodes

pq.push(child)

Driver Code

Initial configuration Value 0 is used for empty space
initial=[[1,2,31],
[5,6,0],

[7,8,4]]

DEPARTMENT OF MECHANICAL ENGINEERING Page 17

Solvable Final configuration Value 0 is used for empty space
final=[[1,2,3],
[59 89 6]’

[0,7,4]]

Blank tile coordinates in initial configuration

empty tile pos=1[1,2]

Function call to solve the puzzle

solve(initial, empty tile pos, final)

Output:
123
560
784

123
506
784

123
586
704

123
586
074

DEPARTMENT OF MECHANICAL ENGINEERING Page 18

PROGRAM-5

Program to solve 8-queen problem

Python program to solve N QueenProblem using backtrackingglobal N
N=4
def printSolution(board):
for i in range(N):
for j in range(N):
print (board[i][j],end="")
print()

A utility function to check if a queen can be placed on board[row][col]. Note that this
function is called when "col" queens are already placed in columns from 0 to col -1. So we

need to check only left side for attacking queens
def isSafe(board, row, col):
Check this row on left side
for i in range(col):
if board[row][i] == 1:

return False

Check upper diagonal on left side
for i, j in zip(range(row, -1, -1), range(col, -1, -1)):
if board[i][j] == 1:

return False

Check lower diagonal on left side

for 1, j in zip(range(row, N, 1), range(col, -1, -1)):

DEPARTMENT OF MECHANICAL ENGINEERING Page 19

if board[i][j] == 1:

return False

return True

def solveNQUitil(board, col):
base case: If all queens are placed then return true
if col >=N:

return True

Consider this column and try placing this queen in all rows one by one

for 1 in range(N):

if isSafe(board, i, col):
Place this queen in board[i][col]

board[i][col] =1

recur to place rest of the queens
if solveNQUtil(board, col + 1) == True:

return True

If placing queen in board[i][col doesn't lead to a solution, then queen from board[i][col]

board][i][col] =0

DEPARTMENT OF MECHANICAL ENGINEERING Page 20

if the queen can not be placed in any row in this column col then return false

return False

This function solves the N Queen problem using Backtracking. It mainly uses
solveNQUtil() to solve the problem. It returns false if queens cannot be placed, otherwise
return true and placement of queens in the form of 1s. note that there may be more than one

solutions, this function prints one of the feasible solutions.
def solveNQ():
board =1 [0, 0, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 0],
[0, 0,0, 0]

]

if solveNQUltil(board, 0) == False:
print ("Solution does not exist")

return False

printSolution(board)

return True

driver program to test above function

solveNQ()

DEPARTMENT OF MECHANICAL ENGINEERING Page 21

Output:

0010
1000
0001
0100

Python3 implementation of the above approach
from random import randint
N=8

A utility function that configures the 2D array "board" and array "state" randomly to
provide a starting point for the algorithm.

def configureRandomly(board, state):

Iterating through the column indices
for 1 in range(N):

Getting a random row index

state[i] = randint(0, 100000) % N;

Placing a queen on the obtained place in chessboard.

board[state[i]][i] = 1;

A utility function that prvars the 2D array "board".
def prvarBoard(board):

for 1 in range(N):

print(*board[i])

A utility function that prvars the array "state".
def prvarState(state):

print(*state)

A utility function that compares two arrays, statel and state2 and returns True if equal and
False otherwise.

DEPARTMENT OF MECHANICAL ENGINEERING Page 22

def compareStates(statel, state2):
for i in range(N):
if (statel[i] != state2[i]):
return False;

return True;

A utility function that fills the 2D array "board" with values "value"
def fill(board, value):
for 1 in range(N):
for j in range(N):
board[i][j] = value;

This function calculates the objective value of the state(queens attacking each other) using
the board by the following logic.

def calculateObjective(board, state):

For each queen in a column, we check for other queens falling in the line of our current
queen and if found, any, then we increment the variable attacking count.

Number of queens attacking each other, initially zero.

attacking = 0;

Variables to index a particular row and column on board.

for i in range(N):

At each column '1', the queen is placed at row 'state[i]', by the definition of our state.
To the left of same row (row remains constant and col decreases)
row = state[i]
col=1-1;
while (col >= 0 and board[row][col] = 1) :
col =1

if (col >= 0 and board[row][col] == 1) :

DEPARTMENT OF MECHANICAL ENGINEERING Page 23

attacking += 1;

To the right of same row (row remains constant and col increases)
row = state[i]
col=1+1;
while (col <N and board[row][col] != 1):

col +=1;

if (col <N and board[row][col] == 1) :

attacking += 1;

Diagonally to the left up (row and col simultaneously decrease)
row = state[i] - 1
col=1-1;
while (col >= 0 and row >= 0 and board[row][col] != 1) :
col-=1;
row-=1;
if (col >= 0 and row >= 0 and board[row][col] == 1) :

attacking+=1;

Diagonally to the right down (row and col simultaneously increase)
row = state[i] + 1
col=1+1;
while (col <N and row < N and board[row][col] !=1):
col+=1;
row+=1;
if (col <N and row < N and board[row][col] == 1) :

attacking += 1;

Diagonally to the left down (col decreases and row increases)

DEPARTMENT OF MECHANICAL ENGINEERING Page 24

row = state[i] + 1

col=1-1;

while (col >= 0 and row < N and board[row][col] |=1) :
col =1;

row +=1;

if (col >= 0 and row < N and board[row][col] == 1) :

attacking += 1;

Diagonally to the right up (col increases and row decreases)
row = state[i] - 1
col=1+1;
while (col <N and row >= 0 and board[row][col] !=1):
col +=1;
row -= 1;
if (col <N and row >= 0 and board[row][col] == 1) :

attacking += 1;

Return pairs.

return int(attacking / 2);

A utility function that generates a board configuration given the state.
def generateBoard(board, state):

fill(board, 0);

for i in range(N):

board[state[i]][i] = 1;

A utility function that copies contents of state2 to statel.
def copyState(statel, state2):

for 1 in range(N):

statel[i] = state2[i];

DEPARTMENT OF MECHANICAL ENGINEERING Page 25

This function gets the neighbour of the current state having the least objective value
amongst all neighbours as well as the current state.

def getNeighbour(board, state):

Declaring and initializing the optimal board and state with the current board and the state as
the starting point.

opBoard = [[0 for _in range(N)] for _in range(N)]
opState = [0 for _in range(N)]
copyState(opState, state);

generateBoard(opBoard, opState);

Initializing the optimal objective value

opObjective = calculateObjective(opBoard, opState);

Declaring and initializing the temporary board and state for the purpose of computation.

NeighbourBoard = [[0 for _ in range(N)] for _ in range(N)]

NeighbourState = [0 for _ in range(N)]
copyState(NeighbourState, state);

generateBoard(NeighbourBoard, NeighbourState);

Iterating through all possible neighbours of the board.
for i in range(N):

for j in range(N):

Condition for skipping the current state

if (j != state[i]) :

Initializing temporary neighbour with the current neighbour.

NeighbourState[i] = j;

DEPARTMENT OF MECHANICAL ENGINEERING Page 26

NeighbourBoard[NeighbourState[i]][i] = 1;
NeighbourBoard[state[i]][i] = 0;

Calculating the objective value of the neighbour.
temp = calculateObjective(NeighbourBoard, NeighbourState);

Comparing temporary and optimal neighbour objectives and if temporary is less than
optimal then updating accordingly.

if (temp <= opObjective) :
opObjective = temp;
copyState(opState, NeighbourState);
generateBoard(opBoard, opState);
Going back to the original configuration for the next iteration.
NeighbourBoard[NeighbourState[i]][i] = 0;
NeighbourState[i] = state[i];
NeighbourBoard[state[i]][i] = 1;

Copying the optimal board and state thus found to the current board and, state since c+= 1
doesn't allow returning multiple values.

copyState(state, opState);
fill(board, 0);

generateBoard(board, state);

DEPARTMENT OF MECHANICAL ENGINEERING Page 27

PROGRAM-6

Implementation of Hill-climbing to solve 8-puzzle problem

def hillClimbing(board, state):

Declaring and initializing the neighbour board and state with the current board and the state

as the starting point.
neighbourBoard = [[0 for _ in range(N)] for _in range(N)
neighbourState = [0 for _ in range(N)]
copyState(neighbourState, state);
generateBoard(neighbourBoard, neighbourState);
while True:

Copying the neighbour board and state to the current board and state, since a neighbour

becomes current after the jump.
copyState(state, neighbourState);
generateBoard(board, state);

Getting the optimal neighbour
getNeighbour(neighbourBoard, neighbourState);
if (compareStates(state, neighbourState)) :

If neighbour and current are equal then no optimal neighbour exists and therefore output the

result and break the loop.
prvarBoard(board);
break;

elif (calculateObjective(board, state) = calculateObjective(

neighbourBoard,neighbourState)):

DEPARTMENT OF MECHANICAL ENGINEERING Page 28

If neighbour and current arenot equal but their objectivesare equal then we are

eitherapproaching a shoulder or alocal optimum, in any case,jump to a random neighbourto

escape it.

Random neighbour

neighbourState[randint(0, 100000) % N] = randint(0, 100000) % N;

generateBoard(neighbourBoard, neighbourState);

Driver code
state = [0] * N

board = [[0 for _in range(N)] for _ in range(N)]

Getting a starting point by randomly configuring the board
configureRandomly(board, state);
Do hill climbing on the board obtained

hillClimbing(board, state);

Output:
00100000
00000100
00000001
10000000
00010000
00000010
00001000
01000000

DEPARTMENT OF MECHANICAL ENGINEERING Page 29

PROGRAM-1
LABEL ENCODING

In machine learning, we usually deal with datasets that contain multiple labels in one or
more than one columns. These labels can be in the form of words or numbers. To make the
data understandable or in human-readable form, the training data is often labelled in words.

Label Encoding refers to converting the labels into a numeric form so as to convert them
into the machine-readable form. Machine learning algorithms can then decide in a better
way how those labels must be operated. It is an important pre-processing step for the
structured dataset in supervised learning.

Example:

Suppose we have a column Height in some dataset.

Height

Tall

Medium

Short

After applying label encoding, the Height column is converted into:

Height

where 0 is the label for tall, 1 is the label for medium, and 2 is a label for short height.

We apply Label Encoding on iris dataset on the target column which is Species. It contains
three species [ris-setosa, Iris-versicolor, Iris-virginica.

Import libraries
import numpy as np

import pandas as pd

DEPARTMENT OF MECHANICAL ENGINEERING Page 30

Import dataset

df =pd.read_csv('../../data/Iris.csv")

df'species'].unique()

Output:
array(['Iris-setosa’, 'Iris-versicolor', 'Iris-virginica'], dtype=object)

After applying Label Encoding
Import label encoder

from sklearn import preprocessing

label encoder object knows how to understand word labels.

label encoder = preprocessing.LabelEncoder()

Encode labels in column 'species'.

dff'species']= label encoder.fit transform(df]'species'])

df'species'].unique()

Output:
array([0, 1, 2], dtype=int64)

Limitation of label Encoding:

Label encoding converts the data in machine-readable form, but it assigns a unique number
(starting from 0) to each class of data. This may lead to the generation of priority issues in
the training of data sets. A label with a high value may be considered to have high priority
than a label having a lower value.

DEPARTMENT OF MECHANICAL ENGINEERING Page 31

PROGRAM-2

Implementing Simple Linear Regression

Simple linear regression is an approach for predicting a response using a single feature.
It is assumed that the two variables are linearly related. Hence, we try to find a linear
function that predicts the response value(y) as accurately as possible as a function of the
feature

Let us consider a dataset where we have a value of response y for every feature x:

For generality, we define:
x as feature vector,iex =[x 1,x 2,....,x n],
y as response vector,i.ecy=[y 1,y 2,....,y 1]

for n observations (in above example, n=10). A scatter plot of the above dataset looks like:-

12 4 &

10 - L

DEPARTMENT OF MECHANICAL ENGINEERING Page 32

Now, the task is to find a line that fits best in the above scatter plot so that we can predict
the response for any new feature values. (i.e a value of x not present in a dataset)
Thisline is called a regression line.

The equation of regression line is represented as:

H(Xi) =By + BiX;

Here,

« h(x_i) represents the predicted response value for i observation.

e b Oandb 1 are regression coefficients and represent y-intercept and slope of
regression line respectively.

To create our model, we must “learn” or estimate the values of regression coefficients b _0

and b_1. And once we’ve estimated these coefficients, we can use the model to predict

responses!

In this article, we are going to use the principle of Least Squares.

Now consider:

Yi=B0+B1Xi+Ei

Ei = Yi -H(Xi)

PROGRAM-

Python implementation of above technique on our small dataset
import numpy as np

import matplotlib.pyplot as plt

def estimate coef(x, y):
number of observations/points

n = np.size(x)

mean of x and y vector
m_X = np.mean(X)

m_y = np.mean(y)

calculating cross-deviation and deviation about x

SS xy =np.sum(y*x) - n*m_y*m_x

DEPARTMENT OF MECHANICAL ENGINEERING Page 33

SS xx =np.sum(x*x) - n*m_x*m_x

calculating regression coefficients
b 1=SS xy/SS xx
bO0O=my-b 1*m x

return (b_0,b 1)

def plot_regression_line(x, y, b):
plotting the actual points as scatter plot
plt.scatter(x, y, color = "m",

marker ="0", s = 30)

predicted response vector

y_pred = b[0] + b[1]*x

plotting the regression line

plt.plot(x, y_pred, color="g")

putting labels
plt.xlabel('x")
plt.ylabel('y")

function to show plot

plt.show()

def main():
observations / data
x =np.array([0, 1, 2,3,4,5,6,7,8,9])
y =np.array([1, 3,2,5,7,8, 8,9, 10, 12])

estimating coefficients
b = estimate_coef(x, y)

print("Estimated coefficients:\nb_0 = {} \

DEPARTMENT OF MECHANICAL ENGINEERING

Page 34

\nb_1 = {}".format(b[0], b[1]))

plotting regression line

plot_regression_line(x, y, b)

__main__ "™

— "

if name

main()

OUTPUT:

Estimated coefficients:
b 0=-0.0586206896552
b 1=1.45747126437

And graph obtained looks like this:

12 -

10 -

DEPARTMENT OF MECHANICAL ENGINEERING

Page 35

Multiple linear regression

Multiple linear regression attempts to model the relationship between two or
morefeatures and a response by fitting a linear equation to the observed data.Clearly, it is
nothing but an extension of simple linear regression.Consider a dataset with p features(or
independent variables) and one response(or dependent variable). Also, the
datasetcontains n rows/observations.

We define: X (feature matrix) = a matrix of size n X p where x_{ij} denotes the values of

ju-feature--for--ig,_observation.

So,
X11 ... X1p
X21 .. Xop
Xn1 ... Xnp

and
y (response vector) = a vector of size n where y_{i} denotes the value of response for iy,

observation.

Y1
y2
Yn

The regression line for p features is represented as:

H(Xl) = B0+B1X11+ BpXip

DEPARTMENT OF MECHANICAL ENGINEERING Page 36

Program-3

Python implementation of multiple linear regression techniques on the Boston house

pricing dataset using Scikit-learn.

import matplotlib.pyplot as plt

import numpy as np

from sklearn import datasets, linear model, metrics
load the boston dataset

boston = datasets.load boston(return X y=False)

defining feature matrix(X) and response vector(y)
X = boston.data

y = boston.target

splitting X and y into training and testing sets
from sklearn.model selection import train_test split

X train, X test, y train, y test = train_test split(X, y, test size=0.4,

random_state=1)
create linear regression object
reg = linear_model.LinearRegression()
train the model using the training sets
reg.fit(X_train, y train)

regression coefficients

DEPARTMENT OF MECHANICAL ENGINEERING Page 37

print('Coefficients: ', reg.coef)

variance score: 1 means perfect prediction

print('Variance score: {}'.format(reg.score(X test, y test)))

plot for residual error

setting plot style

plt.style.use('fivethirtyeight')

plotting residual errors in training data

plt.scatter(reg.predict(X _train), reg.predict(X train) - y train,

color ="green", s = 10, label = 'Train data')

plotting residual errors in test data

plt.scatter(reg.predict(X _test), reg.predict(X test) - y_test,

color ="blue", s = 10, label = 'Test data’)

plotting line for zero residual error

plt.hlines(y = 0, xmin = 0, xmax = 50, linewidth = 2)

plotting legend

plt.legend(loc = 'upper right')

plot title

plt.title("Residual errors")

method call for showing the plot

plt.show()

DEPARTMENT OF MECHANICAL ENGINEERING Page 38

OUTPUT:

Coefficients:

[-8.80740828e-02 6.72507352¢-02 5.10280463e-02 2.18879172¢+00
-1.72283734e+01 3.62985243e+00 2.13933641e-03 -1.36531300e+00
2.88788067e-01 -1.22618657e-02 -8.36014969¢e-01 9.53058061e-03
-5.05036163e-01]

Variance score: 0.720898784611

Residual Error plot :

Residual errors

15 . Train data

10 * A . Test data

—15 .

—20

—25 -*

DEPARTMENT OF MECHANICAL ENGINEERING Page 39

PROGRAM-4

K-nearest neighbor algorithm

This algorithm is used to solve the classification model problems. K-nearest
neighbor or K-NN algorithm basically creates an imaginary boundary to classify the data.
When new data points come in, the algorithm will try to predict that to the nearest of the

boundary line.

Therefore, larger k value means smother curves of separation resulting in less
complexmodels. Whereas, smaller k value tends to overfit the data and resulting in complex

models.

Note: It’s very important to have the right k-value when analysing the dataset to avoid
overfitting and underfitting of the dataset.Using the k-nearest neighbor algorithm we fit the

historical data (or train the model) and predict the future.

PROGRAM

Import necessary modules

from sklearn.neighbors import KNeighborsClassifier
from sklearn.model selection import train_test split
from sklearn.datasets import load iris

import numpy as np

import matplotlib.pyplot as plt

irisData = load_iris()

Create feature and target arrays

X = irisData.data

y = irisData.target

Split into training and test set

DEPARTMENT OF MECHANICAL ENGINEERING Page 40

X train, X_test, y train, y_test = train_test split(

X, y, test_size = 0.2, random_state=42)

neighbors = np.arange(1, 9)

train_accuracy = np.empty(len(neighbors))

test_accuracy = np.empty(len(neighbors))

Loop over K values

for 1, k in enumerate(neighbors):

knn = KNeighborsClassifier(n_neighbors=k)

knn.fit(X_train, y train)

Compute training and test data accuracy
train_accuracy[i] = knn.score(X_train, y_train)

test accuracy[i] = knn.score(X_test, y test)

Generate plot

plt.plot(neighbors, test_accuracy, label = '"Testing dataset Accuracy')

plt.plot(neighbors, train_accuracy, label = 'Training dataset Accuracy')

plt.legend()

plt.xlabel('n_neighbors')

DEPARTMENT OF MECHANICAL ENGINEERING Page 41

plt.ylabel("Accuracy")

plt.show()

Output:

— Testing dataset Accuracy
095 - —— Training dataset Accuracy

1 2 3 4 5 6 7 8
n_neighbors

DEPARTMENT OF MECHANICAL ENGINEERING Page 42

PROGRAM-5

Implementing k-means clustering

k-means clustering is an unsupervised machine learning algorithm that seeks to
segment a dataset into groups based on the similarity of datapoints. An unsupervised model

has independent variables and no dependent variables.

Suppose you have a dataset of 2-dimensional scalar attributes:
[(xla yl)a (an yQ)a eey (mna yn)]

If the points in this dataset belong to distinct groups with attributes significantly varying

between groups but not within, the points should form clusters when plotted.

'=:='-.
-:“-Els- []
e 1.‘,'
ol
.
) --"!. o L
= ..!]:- =:
-'. -
.'«'.."ur:g.- .
s oS
X

DEPARTMENT OF MECHANICAL ENGINEERING Page 43

Algorithm

For a given dataset, k is specified to be the number of distinct groups the points belong to.
These k centroids are first randomly initialized, then iterations are performed to optimize the

locations of these k centroids as follows:

1. The distance from each point to each centroid is calculated.
2. Points are assigned to their nearest centroid.

3. Centroids are shifted to be the average value of the points belonging to it. If the centroids

did not move, the algorithm is finished, else repeat.

Data

To evaluate our algorithm, we’ll first generate a dataset of groups in 2-dimensional
space. The sklearn.datasets function make blobs creates groupings of 2-dimensional normal
distributions, and assigns a label corresponding to the group said point belongs to.
import seaborn as sns
from sklearn.datasets import make blobs
import matplotlib.pyplot as plt
from sklearn.preprocessing import StandardScalercenters = 5
X _train, true_labels = make blobs(n_samples=100, centers=centers, random_state=42)
X_train = StandardScaler().fit_transform(X_train)sns.scatterplot(x=[X[0] for X in X train],

y=[X][1] for X in X_train],
hue=true labels,
palette="deep",
legend=None
)plt.xlabel("x")
plt.ylabel("y")
plt.show()

DEPARTMENT OF MECHANICAL ENGINEERING Page 44

output

1.5
]
[
1.0 - :' .:‘io * e
t?. e * . s.
.oy .
054 ® . .
g *
g oo
0.0 1 ee o 0 .
St L%
> .!' % .
—0.5 o*
=10+
*e
=1.54 .
.
I T
.
—2.0 4 e %o
T T T T T T T
-1.5 -1.0 -0.5 0.0 0.5 1.0 15

Helper Functions

We’ll need to calculate the distances between a point and a dataset of points multiple

times in this algorithm. To do so, lets define a function that calculates Euclidean distances.

def euclidean(point, data):
Euclidean distance between point & data.
Point has dimensions (m,), data has dimensions (n,m), and output will be of size (n,).

nmn

return np.sqrt(np.sum((point - data)**2, axis=1))
Implementation

First, the k-means clustering algorithm is initialized with a value for k and a maximum
number of iterations for finding the optimal centroid locations. If a maximum number of
iterations is not considered when optimizing centroid locations, there is a risk of running an

infinite loop.

class KMeans: def init_(self, n_clusters=8, max_iter=300):
self.n_clusters =n_clusters

self.max_iter = max_iter

DEPARTMENT OF MECHANICAL ENGINEERING Page 45

Now, the bulk of the algorithm is performed when fitting the model to a training
dataset.First we’ll initialize the centroids randomly in the domain of the test dataset, with a

uniform distribution.

Now we can finally deploy our model. Lets train and test it on our original dataset and
see the results. We’ll keep our original method of plotting our data, by separating the true
labels by color, but now we’ll additionally separate the predicted labels by marker style, to see
how the model performs.
kmeans = KMeans(n_clusters=centers)
kmeans.fit(X_train)# View results
class_centers, classification = kmeans.evaluate(X_train)
sns.scatterplot(x=[X[0] for X in X_train],

y=[X[1] for X in X _train],
hue=true labels,
style=classification,
palette="deep",
legend=None
)
plt.plot([x for x, in kmeans.centroids],
[y for ,y in kmeans.centroids],
)

markersize=10,

)plt.show()
OUTPUT:
1.5
k3

e - - wx x

"o ﬁ"’:—!—iv. = x,c”%dx%s:"

— - h) -® --

0.0 - 'E-_-.-+-::--
—0.5 - _:
—_1.04
—1.5 i

— * —+
_2.04 ++++:1?+ ++
—1.5 —1.0 —0.5 0.0 0.5 1.0 1.5

DEPARTMENT OF MECHANICAL ENGINEERING Page 46

PROGRAM-6

Implementing Hierarchical clustering

In data mining and statistics, hierarchical clustering analysis is a method of cluster
analysis that seeks to build a hierarchy of clusters i.e. tree-type structure based on the

hierarchy.

Basically, there are two types of hierarchical cluster analysis strategies —
1. Agglomerative Clustering: Also known as bottom-up approach or hierarchical
agglomerative clustering (HAC). A structure that is more informative than the unstructured
set of clusters returned by flat clustering. This clustering algorithm does not require us to
prespecify the number of clusters. Bottom-up algorithms treat each data as a singleton
cluster at the outset and then successively agglomerates pairs of clusters until all clusters
have been merged into a single cluster that contains all data.
Algorithm:
given a dataset (d;, da, d3,dN) of size N
compute the distance matrix
for i=1 to N:

as the distance matrix is symmetric about

the primary diagonal so we compute only lower

part of the primary diagonal

for j=1 to i
dis_mat[i][j] = distance[d;, d;]
each data point is a singleton cluster
repeat

merge the two cluster having minimum distance

update the distance matrix

until only a single cluster remains

DEPARTMENT OF MECHANICAL ENGINEERING Page 47

Battom-up /
approach
bﬂdi.“
de be

[\ [\ i

W G0 0 &) e (e SR B

Hierarchical agglomerative
clustering

Python implementation of the above algorithm using the scikit-learn library:
from sklearn.cluster import AgglomerativeClustering

import numpy as np

randomly chosen dataset
X =np.array([[1, 2], [1, 4], [1, 0],

[4,2], [4, 4], [4,0]D

here we need to mention the number of clusters
otherwise the result will be a single cluster
containing all the data

clustering = AgglomerativeClustering(n_clusters = 2).fit(X)

print the class labels

print(clustering.labels)

DEPARTMENT OF MECHANICAL ENGINEERING Page 48

OUTPUT:
[1,1,1,0,0,0]

Computing Distance Matrix: While merging two clusters we check the distance between
two every pair of clusters and merge the pair with least distance/most similarity. But the
question is how is that distance determined. There are different ways of defining Inter
Cluster distance/similarity. Some of them are:

1. Min Distance: Find minimum distance between any two points of the cluster.
2. Max Distance: Find maximum distance between any two points of the cluster.
3. Group Average: Find average of distance between every two points of the clusters.

4. Ward’s Method: Similarity of two clusters is based on the increase in squared error when

two clusters are merged.
For example, if we group a given data using different method, we may get different results:

Hierarchical Clustering: Comparison

2. Divisive clustering: Also known as a top-down approach. This algorithm also does not
require to prespecify the number of clusters. Top-down clustering requires a method for
splitting a cluster that contains the whole data and proceeds by splitting clusters recursively
until individual data have been split into singleton clusters.

Algorithm :

given a dataset (d;, ds, d3,dN) of size N

at the top we have all data in one cluster

the cluster is split using a flat clustering method eg. K-Means etc

DEPARTMENT OF MECHANICAL ENGINEERING Page 49

repeat
choose the best cluster among all the clusters to split
split that cluster by the flat clustering algorithm

until each data is in its own singleton cluster

Ancd
efgh

Top-down abode

approach /
fgh bede
de) be

i [\ g

h g f e d € b a

Hierarchical divisive
clustering

DEPARTMENT OF MECHANICAL ENGINEERING

Page 50

	51da88bfd71dacf63016c3611c01953309cad888f85eec37b3326695aa669c1f.pdf
	f817abd0e87f32597dcf3f93e109dcefd2f93aae29614d2e1bd760733451bfdf.pdf
	blank612x792
	f817abd0e87f32597dcf3f93e109dcefd2f93aae29614d2e1bd760733451bfdf.pdf
	blank612x792
	f817abd0e87f32597dcf3f93e109dcefd2f93aae29614d2e1bd760733451bfdf.pdf
	blank612x792
	f817abd0e87f32597dcf3f93e109dcefd2f93aae29614d2e1bd760733451bfdf.pdf
	blank612x792
	f817abd0e87f32597dcf3f93e109dcefd2f93aae29614d2e1bd760733451bfdf.pdf
	blank612x792
	f817abd0e87f32597dcf3f93e109dcefd2f93aae29614d2e1bd760733451bfdf.pdf

	blank612x792
	51da88bfd71dacf63016c3611c01953309cad888f85eec37b3326695aa669c1f.pdf
	51da88bfd71dacf63016c3611c01953309cad888f85eec37b3326695aa669c1f.pdf
	f817abd0e87f32597dcf3f93e109dcefd2f93aae29614d2e1bd760733451bfdf.pdf
	blank612x792
	f817abd0e87f32597dcf3f93e109dcefd2f93aae29614d2e1bd760733451bfdf.pdf
	blank612x792
	f817abd0e87f32597dcf3f93e109dcefd2f93aae29614d2e1bd760733451bfdf.pdf
	blank612x792
	f817abd0e87f32597dcf3f93e109dcefd2f93aae29614d2e1bd760733451bfdf.pdf
	blank612x792
	f817abd0e87f32597dcf3f93e109dcefd2f93aae29614d2e1bd760733451bfdf.pdf
	blank612x792
	f817abd0e87f32597dcf3f93e109dcefd2f93aae29614d2e1bd760733451bfdf.pdf
	blank612x792
	f817abd0e87f32597dcf3f93e109dcefd2f93aae29614d2e1bd760733451bfdf.pdf

	blank612x792
	51da88bfd71dacf63016c3611c01953309cad888f85eec37b3326695aa669c1f.pdf
	blank612x792

